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1 Introduction

Calabi-Yau metrics, with holonomy contained in SU(n), form one of five families of special geometries within
Berger’s classification of the Riemannian holonomy groups of simply-connected, irreducible, non-symmetric1

Riemannian manifolds [3]. They also have a special role to play within algebraic geometry, and mathematical
physics, in Euclidean theories of gravity and string theory.

Examples of Kähler metrics, with holonomy contained in U(n), are relatively easy to construct: one could
take any holomorphic submanifold of CPn with the Fubini-Study metric, or more generally any holomorphic
submanifold of any Kähler manifold, see also [4], [5]. The explicit construction of Calabi-Yau metrics is more
difficult, despite Yau’s proof of the Calabi conjecture, showing the existence of Ricci-flat Kähler metrics in a
given Kähler class, given constraints of topology and complex geometry.

In these notes, we study a construction of Calabi [6], later rediscovered in the physics literature by Page-
Pope [7], of complete Calabi-Yau metrics on the total space of the canonical line bundle over a Kähler-Einstein
metric.

1.1 Kähler and Calabi Yau metrics

Throughout this introduction, let (M, g) be a complete, connected, Riemannian manifold with dim (M) = 2m.
We begin by recalling the following definitions:

Definition 1.1. Let (M, g, J) be a Riemannian manifold with a complex structure J . We say that (M, g, J)
is Kähler, if the associated Kähler form ω ∈ Ω1,1(M), defined by ω (u, v) := g (Jv,w) for u, v ∈ Γ(TM),
satisfies:

dω = 0 (1)

Since Kähler manifolds have an (almost) complex structure, they are automatically orientable, so we may
define a volume form dV ∈ Ω2m(M) with respect to g, i.e. a nowhere-vanishing trivialising section of this
bundle. Since J acts by orthogonal transformations, the mth exterior power of the Kähler form is then a
constant multiple of this volume form. The convention we follow is that:

ωm = m! dV

Example 1.1. On Cm with the standard complex structure, and standard Hermitian metric induced by the
Euclidean metric, i.e. g =

∑
j dzj ⊗ dz̄j , we have the Kähler form given by:

ω =
i

2

∑
j

dzj ∧ dz̄j =
∑
j

dxj ∧ dyj

where we identify (z1, . . . , zm) ∈ Cm with (x1, y1, . . . , xm, ym) ∈ R2m. The standard volume form is:

dV = dx1 ∧ dy1 ∧ . . . ∧ dxm ∧ dym

A fact, which we will need later, is that the volume form dV may also be used to define a point-wise hermitian
structure on (p,m− p)-forms, 0 ≤ p ≤ m:

Ωp,m−p(M)× Ωp,m−p(M) −→ C (α, β) 7−→ 〈α, β〉

This is defined by:

α ∧ β̄ = ip
2

〈α, β〉dV
1Note that Calabi-Yau metrics are necessarily Ricci-flat [1]. Since symmetric spaces are complete, and homogeneous [2, P.236],

in particular if they are Ricci-flat, they flat.
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In particular for s ∈ Ωm,0(M):

m! s ∧ s̄ = im
2

〈s, s〉ωm (2)

We will now briefly digress into some holomorphic vector bundle theory, to understand the general context of
our construction [4, Prop 2.6.23]:

Lemma 1.1. If E →M is a holomorphic vector bundle, we may naturally extend the derivative ∂̄ on p, q-forms
to a C-linear operator ∂̄E : Ωp,q(E) −→ Ωp,q+1(E), such that for all α ∈ Ωp,q(E), f ∈ C∞(M):

∂̄2E(α) = 0 ∂̄E(fα) = ∂̄f ∧ α+ f∂̄Eα

Now for any connection ∇ : Ω0(E) → Ω1(E) on E, consider the splitting: ∇ = ∇1,0 ⊕ ∇0,1 : Ω0(E) −→
Ω1,0(E)⊕Ω0,1(E). We say the connection on E is compatible with the holomorphic structure if ∇0,1 = ∂̄E
on sections of E, i.e. on Ω0,0(E) = Ω0(E). If this connection is also compatible with some hermitian structure
on this bundle, then ∇ is the Chern connection for this hermitian structure: one always exists, and it is
furthermore unique.

An example of this Chern connection can be found on the complex line bundle L :=
∧m,0

(T ∗M) → M .
Given a connection ∇ on L, and open set U ⊆ M , we can find a local non-vanishing section s, so that we can
write:

∇(s) = ψ ⊗ s (3)

for some connection 1-form ψ ∈ C∞ (U, T ∗UC).
To obtain a Chern connection, we use some of additional structure on L: it is the underlying complex vector

bundle to the canonical bundle KM → M , the mth power of the holomorphic cotangent bundle [4, Prop
2.6.4]. In the case of our hermitian structure on Ωm,0(M), the Chern connection is torsion-free, and coincides
with the induced Levi-Civita connection of (M, g) [4, 4.A.7].

There are two formulae we will need from (3) for the Calabi ansatz. Firstly, since the Levi-Cevita connection
is torsion-free:

ds = ∂s+ ∂̄s = ψ ∧ s (4)

Second, since the Levi-Cevita connection is metric compatible:

d〈s, s〉 = 〈∇(s), s〉+ 〈s,∇(s)〉
= 〈s, s〉 ⊗

(
ψ + ψ̄

)
⇒

d log〈s, s〉 = 1⊗
(
ψ + ψ̄

) (5)

Since L is a complex line bundle, the curvature is given by dψ. The curvature of this bundle relates to the
curvature of the Kähler metric on M via the Ricci form ρ ∈ Ω1,1(M). For u, v ∈ Γ(TM), this is defined by:

ρ(u, v) := Ric(Ju, v)

This form has the property that ρ = itrCF∇, for ∇ the Levi-Civita connection on
∧1,0

(T ∗M) with respect to
the Kähler metric, [4, 4.A.11]. Since trCF∇ is the curvature of the Chern connection for the induced hermitian

metric on the canonical bundle L = detC(
∧1,0

(T ∗M)), we have:

Lemma 1.2. Let (M, g, J) be Kähler. Then ρ = idψ, where dψ is the curvature of the Chern connection ψ for

the induced hermitian structure on the canonical bundle L = detC(
∧1,0

(T ∗M)).

Proof. On any tensor product bundle E1⊗E2 with the natural tensor product connection ∇1⊗∇2, the action of
the curvature on sections splits as a tensor product F∇1

⊗1+1⊗F∇2
. Let (E, g,∇) be

∧1,0
(T ∗M), identified with

the holomorphic cotangent bundle, ∇ be the Levi-Civita connection, and g be the hermitian metric with local
holomorphic basis e1 . . . en, and define F∇e

j =
∑
i e
i ⊗ F ij∇ where F ij∇ is a u(m)-valued 2-form. If we consider

the curvature of the complex determinant bundle detC(E), then the induced action of F∇ on e1 ∧ . . . ∧ en is as
follows:

F∇
(
e1 ∧ . . . ∧ en

)
=
∑
j

e1 ∧ . . . ∧ F∇ej ∧ . . . ∧ en

=
∑
j,i

e1 ∧ . . . ∧ ei ∧ . . . ∧ en ⊗ F ij∇

=
∑
j

e1 ∧ . . . ∧ ei ∧ . . . ∧ en ⊗ F jj∇

= trC(F∇)e1 ∧ . . . ∧ en
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With this vector bundle theory understood, we return to a special class of Kähler manifolds:

Definition 1.2. A Kähler manifold (M, g, J) is Kähler-Einstein if the Ricci curvature satisfies:

Ric (u, v) = λg (u, v)

for some λ ∈ C∞(M). Note that if dimRM > 2, then we must have a constant λ = scal
n . Also, by Lemma (1.2),

an alternative restatement of this condition is:

idψ = ρ = λω

Let us make a few remarks about Kähler-Einstein metrics before moving on. The sign of λ can have
important topological consequences for M : for example, if λ > 0, since the scalar curvature is constant, then
Ric ≥ scal

n > 0, thus we may apply Bonnet-Myers theorem. This implies that the diameter of M is bounded,
so it must be compact, and furthermore it must have finite fundamental group. Much progress has been made
on the classification of compact Kähler-Einstein manifolds. For example, in positive scalar curvature, n = 4,
in [8], it is shown that the only possible Kähler-Einstein manifolds are: CP1 × CP1, CP2, and Blp1...pkCP

2, for
3 ≤ k ≤ 8, where Blp1...pkCP

2 denotes the blow-up of CP2 along distinct isolated points p1 . . . pk. Here, we
give CP2 the Fubini-Study metric2, and CP1×CP1 has the product metric. For more references on this, see [9,
Ch.11].

A particularly important class of Kähler-Einstein metrics occurs when λ = 0: in this case, the metric is
Ricci-flat, and the universal cover will be Calabi-Yau. We will recall some of the properties of Calabi-Yau
metrics, following [1]3.

Definition 1.3. Let (M, g, J) be a Kähler manifold, and Ω ∈ Ωm,0(M). We say that (M, g, J,Ω) is Calabi-
Yau, if:

dΩ = 0 (6)

m! Ω ∧ Ω̄ = im
2

ωm (7)

We call Ω a holomorphic volume form for (M, g, J). By definition, it has unit norm with respect to the
hermitian metric (2) on Ωm,0(M).

There are a few implications to this definition, which we will now discuss. The first point is that this
definition implies that

∧m,0
(T ∗M) is trivial. We can see this explicitly: our second equation gives us that Ω

is non-vanishing, so any point e of the line bundle
∧m,0

(T ∗M) may be written as e = zΩ, where z ∈ C will
parametrize the fibre coordinate of M × C.

The second point to make concerns the Ricci form ρ ∈ Ω1,1(M). We have that dΩ = ∂̄Ω = ψ∧Ω = 0 where ψ
is the induced Levi-Civita connection one-form. Since Ω is a non-vanishing (m, 0)-form, this implies Imψ = 0,

and by (5), since the hermitian norm of Ω is constant, ψ = −ψ̄. Therefore ψ = 0, so
∧m,0

(T ∗M) is flat, and
ρ = 0 by Lemma 1.2.

If M is simply-connected, then Ricci-flat Kähler metrics correspond to Calabi-Yau metrics in the following
way: one may use the flatness condition on the canonical bundle to trivialise it by a non-zero parallel section.
This section may not be globally defined when M is not simply connected, so canonical bundle may not be
trivial. However, one can avoid this by working on the universal cover of M instead.

2 Calabi Construction

As discussed in the introduction, the problem that motivated the Calabi construction was to construct non-
homogeneous Ricci-flat Kahler metrics, this is done on the total space of the canonical bundle over a Kähler
manifold, viewed as a holomorphic line bundle. Certainly, if we want the metric to be Calabi-Yau, then we
must impose that the base is at least Kähler, but we will see that there will be extra conditions on the base
metric depending on the curvature of this bundle.

Let (M,J, gM ) be a Kähler manifold, and π : L → M be the canonical bundle with fibre F = C. Locally at
least, the tangent space TL splits, so an ansatz for a metric g on L|U for some open U ⊆ M would be to split
the tangent space orthogonally at p ∈ L|U :

g = u(p)gU + v(p)gF (8)

2In any dimension, CPn with Fubini-Study is an example of a positive Kähler-Einstein metric.
3Although we drop the condition of compactness.
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To make sure this is ansatz is well-defined, independent of trivialisation, we would require at least a global
splitting of TL. This can be achieved by fixing a lift of TM to TL, i.e. a connection on L. The natural choice
would be to use the Chern connection on L.

Now, away from the zero section of L, L\M ∼= P × (0,∞), where P is the principal circle bundle as defined
by the hermitian structure (2). So, we can write a global splitting T (L\M) ∼= ker dπ ⊕ H, where H is the
horizontal subspace defined by the kernel of a connection one-form on P , and ker dπ ∼= TC.

If we choose some (possibly non-holomorphic) local section s ∈ C∞ (U,P ), so that as in (3):

∇(s) = ψ ⊗ s

We know by (5) that −ψ = ψ̄, so iψ is a real 1-one form, so on P |U ∼= U × S1 3 (x, θ), define the real 1-form
on P :

σ := dθ − iψ

This is a S1-invariant one-form which is the identity on ker dπ, i.e. σ is a connection form on P . This means
that if the local coordinates for L|U ∼= U × S1 × (0,∞) are (x, θ, r), then the one-forms appearing in the fibre
metric should be dr and dθ − iψ.

We will make the further assumption in our ansatz (8) that u, v depend only on r. Then by promoting
dθ 7→ σ for the flat metric dr2 + r2dθ2 on C, we can write a warped product of a metric on the fibre C and the
metric on M as:

g = u(r)gM + v(r)
(
dr2 + r2σ2

)
(9)

Now, for any choice of smooth functions u, v, this defines a metric on L\M . Furthermore, if ωM is the Kähler
form on M , then a natural ansatz for the Kähler form for g on L is given by:

ω = u(r)ωM − v(r)rdr ∧ σ (10)

With this ansatz for the Kähler structure fixed, we will make some additional comments. We can write
every section s̃ of L as zs for some s ∈ C∞ (M,P ), z ∈ C∞ (M,C), possibly degenerately. So locally, by Leibniz
rule, and equation (3), we may write the section:

∇(zs) = (dz + zψ)⊗ s

For ease of notation, let us identify ψ with its pull-back via π, so that we write (dz + zψ) as a 1-form on L|U .
Locally, we may consider z as a coordinate on our fibre. Let us investigate what this looks in polar coordinates.
Write z = reiθ, so that:

dz = eiθ(dr + irdθ) dz + zψ = eiθ(dr + ir(dθ − iψ))

This is a well-defined tensor on L|U , and can be locally extended to the zero section at z = 0. To make an
ansatz for the holomorphic volume form for the metric (9), we further claim that we can use the derivative of
the tautological form zs, i.e.

Ω = d (zs) = (dz + zψ) ∧ s (11)

This is well defined on L as the S1-action on this section is trivial.

Proposition 2.1. On some open subset of L, with Ω as defined above, and

g = u(r)gM + v(r)
(
dr2 + r2σ2

)
ω = u(r)ωM − v(r)rdr ∧ σ (12)

(g, ω,Ω) is a Calabi-Yau structure iff gM is Kähler-Einstein, and u, v satisfy:

v =
2m

rscal(gM )

du

dr
2 = umv

Proof. We must check this structure is Kähler, i.e. dω = 0, that it is furthermore Calabi-Yau, i.e. dΩ = 0 and
〈Ω,Ω〉 = 1. As for the first point:

dω =
du

dr
dr ∧ ωM + vrdr ∧ dσ

= dr ∧
(
du

dr
ωM − ivrdψ

)
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Then clearly, for this to vanish, it is necessary that gM be Kähler-Einstein, as in definition (1.2): i.e. that ωM
is proportional to idψ. Again, gM is in particular Einstein, thus the ratio is constant for m > 1, and equal to
the scalar curvature over the real dimension of M , i.e.:

scal(gM )

2m
ωM = idψ (13)

Define T := scal
2m . If (13) holds, then for ω to be closed, we must have the ODE in u, v:

v =
1

rT

du

dr

Now for the Calabi-Yau conditions. Clearly Ω is closed, but we must check unit norm:

(m+ 1)!Ω ∧ Ω̄ = i(m+1)2〈Ω,Ω〉ω(m+1)

(m+ 1)!(dr + irσ) ∧ s ∧ (dr − irσ) ∧ s̄ = −i(m+1)2〈Ω,Ω〉 (m+ 1)umvrωmM ∧ dr ∧ σ

− (m+ 1)!(−1)m2irdr ∧ σ ∧ i
m2

m!
∧ ωmM = −i(m+1)2〈Ω,Ω〉(m+ 1)umvrωmM ∧ dr ∧ σ ⇒

2 = 〈Ω,Ω〉umv

Now let us consider solving the ODE explicitly. In terms of u, we get the ODE:

2 = um
1

rT

du

dr
(14)

Integrating, we get general solution, for some constant C:

u =
(
T (m+ 1) r2 + C

) 1
m+1 v = 2

(
T (m+ 1) r2 + C

)− m
m+1

Re-defining our parameter r: r 7−→ r(m+ 1)−
1
2 , our metric (9) becomes:

g =
(
Tr2 + C

) 1
m+1 gM +

2

m+ 1

(
Tr2 + C

)− m
m+1

(
dr2 + r2σ2

)
(15)

This metric is the one considered by Calabi in [6], also see [10, Th.8.1]. It is Calabi-Yau, by construction, and
as we will show, in the next section, it is smooth and complete on the total space of L, provided gM is complete,
and T > 0, C > 0. First, however, we give an explicit example in the case where m = 1:

Example 2.1. The Eguchi-Hanson metric over TS2, with base manifold CP1 ∼= S2 with the Fubini-Study
metric. The Fubini-Study metric on S2 occurs as the base of a Riemannian submersion:

(
S3, ds23

)
7→
(
S2,

1

4
ds22

)
Where ds2n is the canonical metric, induced from the Euclidean metric on Rn+1. We use isometry:(

S3, ds23
) ∼= (SU(2), σ2

1 + σ2
2 + σ2

3

)
where σi is the the canonical left-invariant basis of TSU(2), and the U(1)-action on S3 generates a vector-field
dual to σ1. Using this form of the metric, we write the Fubini-Study metric at TISU(2), normalised so that
T = 1 as σ2

2 + σ2
3 . So we can write the Eguchi-Hanson metric as follows:

g =
(
r2 + C

) 1
2
(
σ2
2 + σ2

3

)
+

1

2

(
r2 + C

)− 1
2
(
dr2 + r2σ2

1

)
(16)

To give this in a more recognisable form, we write this using the parametrization:

t2 =
(
r2 + C

) 1
2

gEH =

(
1− C

t4

)−1
dt2 + t2

((
1− C

t4

)
σ2
1 + σ2

2 + σ3
2

)
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In this parametrisation, the asymptotic behavior as t→∞ is the limit C → 0, which locally gives the Euclidean
metric. A Kähler form for this metric is given by:

ωEH = tdt ∧ σ1 + t2σ2 ∧ σ3

Note that this agrees with our convention:

ω2
EH = 2t3dt ∧ σ1 ∧ σ2 ∧ σ3 = 2dVEH

Also, the holomorphic volume form is given by:

ΩEH =

((
1− C

t4

)− 1
2

dt+ it

(
1− C

t4

) 1
2

σ1

)
∧ (tσ2 + itσ3)

3 Boundary Conditions

Let us consider the possible values of our two real-valued parameters (T,C). Out of the nine combinations of
possible cases T < 0, T = 0, T > 0, and C < 0, C = 0, C > 0, clearly equation (14) only has real solutions,
and this metric is only defined if Tr2 + C > 0, so straight away, we may throw out two cases (T < 0, C ≤ 0).
Also we may discard cases where T = 0, since by (13), this implies that the Ricci curvature vanishes, so the
universal cover M̃ of M is Calabi-Yau, in particular the canonical bundle is trivial with flat connection i.e. we
can choose s such that ψ vanishes, hence this metric just reproduces the product metric.

We summarise the results of this section with the following table:

T < 0 T = 0 T > 0
C < 0 Not defined Product Incomplete
C = 0 Not defined Product Singular
C > 0 Incomplete Product Complete

Now we show both the cases (T < 0, C > 0) and (T > 0, C < 0) do not define a complete metric for essentially
a single reason: that radial geodesics reach Tr2 +C = 0 in finite time, despite this being a degenerate point for
the metric in these coordinates.

Proposition 3.1. The metric defined in (15) is complete and not isometric to a product metric iff gM is
complete, and T > 0, C > 0.

In the interest of rigour however, we will prove the following basic lemma for general Riemannian metrics:

Lemma 3.2. Let r parametrize the interval I ⊂ R, and
(
I × P, g = f(r)2dr2 + gr

)
be a Riemannianian mani-

fold, for some smooth function f , manifold P with smooth 1-parameter family of Riemannian metrics gr, then
the arc-length parametrization of the curves γp(t) = (t, p) are geodesics, for any p ∈ P .

Proof. We may re-parametrise g by r̃ =
∫ r
a
f(s)ds, then dr̃ = fdr. f must be non-vanishing so that g is

non-singular, so
∫ r
a
f(s)ds is strictly increasing, hence r̃(r) will be invertible on the entire interval, and the

metric gr(r̃) on P will be be smooth. Therefore, it suffices to consider g = dr2 + gr. Let γ′p = ∂r. We want
to show then, that g (∇∂r∂r, X) = 0 for all X ∈ Γ (T (I × P )). Now restrict to some open set U ⊆ P , so that
we may write X|I×U in an orthonormal basis with respect to g|I×U i.e. X|I×U = a0∂r +

∑
i>0 aiXi, for some

ai ∈ C∞(I × U), Xi ∈ Γ (TU), such that gr (Xi, Xi) = a−2i .

g (∇∂r∂r, ∂r) =
1

2
L∂rg (∂r, ∂r) = 0

And by Koszul formula:

2g (∇∂r∂r, Xi) = 2g ([∂r, Xi] , ∂r) = 0

Thus if the unique radial geodesic γp(t) = (t, p) through (r, p) cannot be extended for all t, then the metric
will be incomplete. This is independent of choice of coordinates for g on I × P , geodesics are independent
of choice of parametrisation. We return to the discussion of the Calabi metric (15), apply this lemma to
L\M ∼= P × R>0. Then in order for the metric to be complete, it is necessary that the radial geodesics should
be defined for all values of the parametrisation by arc-length. However, in the case −CT > 0, then r2 → −CT
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will be singular, so the arc-length should tend to infinity. Since length of a curve is parametrization invariant,
then the length of these geodesics starting at (p, b) ∈ P × R>0 will be:

lγ =

(
1

m+ 1

) 1
2
∫ b

(−C
T )

1
2

(
Tr2 + C

)− m
2(m+1) dr

This integral in either case is finite: we could see this for example, by noting that Tr2 + C for r ≥
(
−CT

) 1
2 is

bounded below by the line passing through C = 0 and
(
−CT

) 1
2 , so one may make a linear change of variable to

get a finite integral. E.g. in the case (T > 0, C < 0):

lγ ≤
(

1

m+ 1

) 1
2
∫ b

(−C
T )

1
2

(
−C

(
−C
T

)− 1
2

r + C

)− m
2(m+1)

dr

= const×
∫ b′

0

r−
m

2(m+1) dr

= const× r
m+2

2(m+1)

∣∣∣b′
0
<∞

The case (T < 0, C > 0) is similar. Hence radial geodesics for (T < 0, C > 0) and (T > 0, C < 0) are not defined
for all time, so these metrics will not be complete. Moving on to the case (T > 0, C = 0) we have:

g = T
1

m+1

(
r

2
m+1 gM +

1

m+ 1

1

T
r−

2m
m+1

(
dr2 + r2σ2

))
Make the change of variable:

r̃ = (m+ 1)
1
2 r

1
m+1

So we get the metric:

g = T
1

m+1

(
1

T
dr̃2 +

1

T

r̃2

(m+ 1)
2σ

2 +
r̃2

(m+ 1)
gM

)

I.e. with this metric has the form of the Riemannian cone over (P, gP ),
(
C(P ), dr2 + r2gP

)
, with a metric on

P given by:

gP =
1

(m+ 1)
2σ

2 +
1

(m+ 1)
TgM

Recall that Riemannian cones are always singular at the origin unless (P, gP ) =
(
S2m+1, gS2m+1

)
, the unit sphere

in R2m+2 with the standard metric. On the other hand, the situation is somewhat better than the previous
case, as here our manifold only has potential singularities at the isolated point r̃ = 0. In general, Riemannian
manifolds with Ricci-flat metrics and finitely many isolated conical singularities are known as conifolds [11].
However we still may be able to de-singularise, at least if we choose M , and our parameter T correctly. We
will return to what choice of parameters amounts to later, but for now, note that P is an S1 bundle over M ,
so the best we could hope to have is that M is an S1 quotient of S2m+1. If we choose the Fubini-Study metric
on CPm ∼= S2m+1/S1 with normalisation such that the scalar curvature T = 1

m+1 , then locally, we retrieve the

standard flat metric on Cm+1 ∼= R2m+2, up to overall scaling. However, recall the the canonical bundle of CPm
is isomorphic to O(−m− 1), the (m+ 1)th power of the tautological line bundle O(−1) on CPm, so in this case
P ∼= S2m+1/Zm+1, with Zm+1 acting along the Hopf fibre. Hence, the metric we get is globally defined on the
orbifold Cm+1/Zm+1.

Finally, we come to the case (T > 0, C > 0). Now S1 acts isometrically on P × {r} for fixed r, so to check
completeness, it suffices to check completeness for radial geodesics. Again, this amounts to the divergence of
the integral:

lγ =

(
1

m+ 1

) 1
2
∫ b

a

(
Tr2 + C

)− m
2(m+1) dr

in the limits b→∞ and a→ 0.

Proposition 3.3. The metric (15) with T > 0, C > 0 is not flat.
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Proof. There are many ways of showing this, but we give a quick proof: recall that [2, p.144], that the fix
point-set Fix(S) ⊂ M for a set of isometries S ⊂ Iso (M, g) is a totally-geodesic sub-manifold, i.e. the second
fundamental form II (X,Y ) vanishes on Fix(S). For arbitrary sub-manifolds N ⊂M , this is given by:

II (X,Y ) := ∇NXY −∇XY

where ∇N is the connection on N induced by the Levi-Civita connection ∇ on M . If RN is the curvature tensor
of ∇N , then:

g (R (X,Y )W,Z) = g
(
RN (X,Y )W,Z

)
− g (II (Y,Z) , II (X,W )) + g (II (X,Z) , II (Y,W ))

Thus the Riemann curvature tensor on a totally-geodesic sub-manifold agrees with the Riemann curvature tensor
of the manifold itself, for X,Y,W,Z ∈ Γ(TN). In particular, in our example, if we let S = U(1), with the action

induced from the bundle structure: i.e. sending (x, z) 7→
(
x, zeiθ

)
, then M = Fix(S), and g|M = C

1
m+1 gM . By

our previous analysis, if gM is flat, then so is g, thus (L, g) is flat if and only if (M, gM ) is.

3.1 Interpreting parameters, and asymptotics.

The construction of the Calabi-Yau metric (15), appeared in an apparent two-parameter family, with constants
T,C. However, we will show that these parameters only alter the metric up to an overall re-scaling.

First, recall that we defined T as scal(gM )
2m . Under a rescaling of the base gM 7−→ λ2gM by a constant λ, we

get T 7−→ λ−2T . Making the re-parametrization r 7→ r

T
1
2

in (15), we get the metric:

g =
(
r2 + C

) 1
m+1 gM +

1

T

1

m+ 1

(
r2 + C

)− m
m+1

(
dr2 + r2σ2

)
(17)

So the only effect of rescaling gM , and thus T , is changing the overall scale of this metric.
Similarly, notice that equation (14) is homogenous, thus we can expect solutions to be homogeneous, and

indeed, if we re-parametrize:

r 7→ rC
1
2

Then we get:

g = C
1

m+1

((
Tr2 + 1

) 1
m+1 gM +

1

m+ 1

(
Tr2 + 1

)− m
m+1

(
dr2 + r2σ2

))
(18)

Thus C represents an overall scale of this metrics, and the manifold M sits inside L, restricted to the zero-section

r = 0, with size C
1

m+1 . This also makes explicit what the asymptotics of this metric are: the limit r → ∞ is
the limit C → 0, which is the calculation done in the previous section.
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