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1 Bianchi-IX and Isometry

Given some action of a Lie group G on a Riemannian manifold (M, g), M 3 p 7−→ hp, h ∈ G, define (M, g) be
(left-) G-invariant if that the induced action on TM acts isometrically. In other words: for fixed h ∈ G write
the map above Lh : M −→ M . If gp is the Riemannian metric on TpM , then a G-invariant metric satisfies
(Lh)∗gm = ghp. The Bianchi-IX metrics are a class of SU(2)-invariant metrics on 4-manifolds, such that the
manifold, on some dense open subset, is diffeomorphic to I × S3, with I ⊂ R. They take the following form:

g = f20 (r)dr2 + f21 (r)σ1
2 + f22 (r)σ2

2 + f23 (r)σ3
2 (1)

Here we have the local basis of SU(2) left-invariant 1-forms σ1, σ2, σ3, and functions fi to be determined. From a
physics point of view, one reason these metrics are interesting because this SU(2)-invariance is locally equivalent
to rotational (i.e. SO(3))-invariance, so provide possible rotationally symmetric solutions to Einstein’s equations
for gravity in Euclidean space. There are many interesting metrics of the Bianchi-IX type, but we will focus on
a particular subset of these.

Now, if we assume our manifold is orientable, then there is a generic point-wise isometric action by SO(4) in
the orthonormal frame-bundle given by the adjoint representation. However, we may want to impose isometries
in some open set: recall that SO(4) ∼= (SU(2)L × SU(2)R) /Z2, where we can identify each SU(2) as acting on
R4 on the left/right respectively. From the form of the metric, we have already assumed an SU(2)L-isometry,
but we may impose an additional U(1) ↪→ SU(2)R right-invariance, to obtain a metric of the following form [1]:

g = dr2 + ϕ2 (r)
(
ψ2 (r)σ1

2 + σ2
2 + σ3

2
)

(2)

We have also re-parametrized our metric such that the r-coordinate axis is a radial geodesic. In what follows,
we will only consider metrics with these isometries, and we will examine their behaviour in terms of functions
ψ,ϕ. Later on, we will re-parametrise this metric where necessary, but we will be somewhat explicit with our
calculations, and hopefully this transparency will clarify some of the geometric intuition.

In doing so, we will see the prototypical examples of two types of geometries: ALE and ALF, intuitively:
these are metrics with asymptotic behaviour as scalar multiples of the canonical flat metrics, on R4, and R3×S1

respectively1. Again, there is much interest in these type of spaces from physics, from which the two examples
presented are drawn[2]. As much of the work on these types of spaces is relatively recent, there are differing
definitions in literature, but one may consult L.Foscolo for a more precise statement. We will omit them as we
will not use them, but rather we will highlight the key features in the construction of these metrics.

Finally, using our previous calculations, we will construct abelian instantons over these two spaces: these
are U(1) principal bundles with anti-self dual curvature 2-forms. Again this question has both physical and
geometric motivation: one reason is that these two forms minimise the Yang-Mills functional SYM . For an
SU(n) principal-bundle, over 4- manifold X, which has curvature form F , the Yang-Mills functional is defined
as:

SYM =

∫
X

Tr (F ∧ ?F )

In the abelian case, these instantons correspond to a solution to the classical equations of motion for electro-
magnetism over the manifold.

1These are actually the first two in a family of spaces: ALE, ALF, ALG, ALH, with the flat metrics on R4−k × (S1)k for
0 ≤ k ≤ 3.
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2 Eguchi-Hanson and ALE geometry

Now we have a metric (2), we choose the orthonormal co-frame {e0, e1, e2, e3} = {dr, ψϕσ1, ϕσ2, ϕσ3}. Using
these, we then define the triple, i ∈ {1, 2, 3}, of 2-forms:

ωi = e0 ∧ ei +
∑
j,k

1

2
εijke

j ∧ ek (3)

In the orthonormal frame, these define endomorphisms of the tangent space by ωi(· , ·) = g(Ji ·, ·):

J1 =


−1

1
−1

1

 J2=


−1

1
1
−1

 J3 =


−1

−1
1

1



This is an almost hypercomplex structure: point-wise2, {J1, J2, J3} obey the quaternion relations J2
i = −1 and

J1J2 = J3 = −J2J1. More generally, for the anti-commutator bracket {·, ·}, we have {Ji, Jj} = 0 for i 6= j.
It is also worth mentioning, there is an S2 of almost-complex structures given by Ja = a1J1 + a2J2 + a3J3

with (a1, a2, a3) ∈ S2. The claim is easily verified:

J2
a =

∑
i

∑
j

aiJiajJj

=
∑
i=j

aiJiajJj +
∑
i<j

{aiJi, ajJj}

=
∑

a2iJ
2
i = −1

In our calculations, we choose the normalisation of σi, such that their exterior differential algebra obeys
dσi = −εijkσj ∧ σk, e.g. dσ1 = −2σ2 ∧ σ3. Let us focus on ω1 for a moment. From the following:

dω1 = 2ϕ (ϕ′ + ψ) dr ∧ σ2 ∧ σ3 (4)

We see that
(
g, J1, ω

1
)

is an almost Kähler structure iff:

dω1 = 0⇔ ϕ′ = −ψ (5)

Of course, we exclude the trivial solution ϕ ≡ 0, since it is degenerate for this metric. Also, we have:

dω2 = ϕ (2 + 2ϕ′ψ + ψ′ϕ) dr ∧ σ3 ∧ σ1 (6)

And similarly for dω3. So we have further condition if
(
g, Ji, ω

i
)

is to define an hyperKähler structure:

dω1 = dω2 = dω3 = 0⇔

{
ϕ′ + ψ = 0

2− 2ϕ′2 − ϕ′′ϕ = 0
(7)

This set of ODEs has explicit solutions- one may make a substitution to find:

dω1 = dω2 = dω3 = 0⇔

{
ψ = −ϕ′

ϕ′2 = 1− kϕ−4
(8)

This metric is known as the Eguchi-Hanson metric, and we can write out explicit solutions for it, by changing
parametrization:

t = ϕ(r)⇒

dt =
dϕ

dr
dr = −ψdr

So rewriting the metric (2), we get:

gEH =
1

ψ2
dt2 + t2

(
ψ2σ2

1 + σ2
2 + σ3

2
)

=

(
1− k

t4

)−1
dt2 + t2

((
1− k

t4

)
σ2
1 + σ2

2 + σ3
2

)
2The condition of orientability on X is important if these structures are to be globally defined.
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From this parametrisation, we see that its asymptotic behaviour as t → ∞ is that of the Euclidean metric on
R4. Hence this metric is of type ALE- asymptotically locally Euclidean. This description leaves the possibility
for globally non-Euclidean behaviour of the manifold: in fact, with suitable boundary conditions the Eguchi-
Hanson defines a smooth metric on TS2 for k > 0, and with k = 0 there is the standard Euclidian metric on
the orbifold R4/Z2. These types of spaces were classified by Kronheimer in [3] as quotients R4/Γ, where R4 has
the quaternion structure, and Γ is some finite subgroup of SU(2): in this example, clearly we have Γ ∼= Z2. One
might wonder how this relates to the metric on TS2: this is because the classification also requires a resolution
of singular points on R4/Γ, but we will not discuss this here. One final point to note is that a reparametrisation

t 7→ k
1
4 t gives the metric up to scale k

1
2 :

gEH =

(
1− 1

t4

)−1
dt2 + t2

((
1− 1

t4

)
σ2
1 + σ2

2 + σ3
2

)
The point is that we may always pick k = 1 as this just corresponds to rescaling the metric: so there is really
only one metric we are describing here.

3 Taub-NUT and ALF geometry

3.1 Anti-Self Daul metrics

Recall now that for any 4-manifold (M, g), there is a splitting
∧2

(T ∗M) =
∧+

(T ∗M)⊕
∧−

(T ∗M), induced by
the Hodge star operator ?. These correspond to the +1,−1 eigenspaces at each point of the operator, since ?2 =
1, and we can identify these spaces with the splitting of the Lie algebra so(4) = so(3)

⊕
so(3) = su(2)

⊕
su(2).

Notice that the ωi just defined are a basis for
∧+

(T ∗M) in this splitting: let dV := e0 ∧ e1 ∧ e2 ∧ e3, the
standard oriented volume form on M induced by g. Then we have:

ωi ∧ ωj = 2δijdV

A key property of the Eguchi-Hanson metric of the last example is that it is anti-self dual3 in the sense that
?F ij = −F ij , where the curvature F ij of the Levi-Civita connection on M is a section of the bundle:

F ∈ C∞
(
M, End(T ∗M)

⊗ 2∧
(T ∗M)

)
Anti-self duality corresponds then to the condition that the induced Levi-Civita connection, when restricted
to the bundle

∧+
(T ∗M), is flat. For Eguchi-Hanson, it is no coincidence that there is also a hyperKähler4

structure (3) - recall also that π1(TS2) = 0 = π1(R4 \ 0), so the following lemma applies (stated in [3]):

Lemma 1. Let (M, g) be a Riemannian 4-manifold such that π0(M) = π1(M) = 0. If the curvature F of the
Levi-Civita connection ∇ of g satisfies ?F ij = −F ij, then (M, g) is hyperKähler.

Proof. There is a bijection (see [4]) between the set flat connections (P,A) on any principal-bundleG ↪→ P →M ,
and the set Hom(π1(M,x), G), for some base-point x ∈M . This assigns (P,A) 7→ ρA, where:

ρA : γp 7→ hA,γ(p) ∈ Holp(P,A) ⊆ G

Here γp is the unique horizontal lift of γ ∈ Lx(M), the space of based loops at x, and ρA descends to a well-
defined map on [γ] ∈ π1(M,x). So if M is simply-connected, and G connected, then we may take ρA to be the
map:

ρA : γp 7→ h0 ∈ Holp(P,A) ∀p ∈ P |x
Without loss of generality, we may take h0 = IdG, since otherwise we may apply the automorphism Lh−1

0
:

P −→ P that sends γp 7→ γp(0)h−10 - hence for any based loop γ ∈ Lx(M), we have that its holonomy is trivial.
Identify P |x∼= G then one may obtain a trivialisation of P , by constructing a globally defined isomorphism
P |x∼= P |y ∀y ∈ M as follows: take η : [0, 1] −→ M , be some path from x to y, with unique horizontal lift ηg,
for g ∈ P |x. Then for fixed define the parallel transport map:

Tη : P |x −→ P |y
Tη : g 7→ ηg(1)

Since the horizontal lift is unique this is well-defined for given g and η. It also clearly everywhere invertible by
Tη−1 , so defines an isomorphism. However this map is independent of path η, since if Tη′ is some other path,

then TηT
−1
η′ = Tηη′−1 = IdG as ηη′−1 ∈ Lx(M). Thus we may trivialise (P,A) ∼= (M ×G,Atriv), where Atriv is

the trivial connection.
3There is some ambiguity about this definition in the literature: some might say this property is equivalent to being anti-self

dual and Ricci-flat [2].
4The point-wise structure as defined turns out to be necessarily integrable.
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Now we have a trivilisation of the any principal bundle associated to M , we use that [4] the Levi-Civita
connection is the unique connection on the (oriented) orthonormal frame bundle PSO(4) such that the induced

derivative for sections of T ∗M is torsion free. So if we use the isomorphism
∧2

(T ∗M) ∼= PSO(4)×Ad so(4), then

by some automorphism of the frame bundle we get the splitting
∧2

(T ∗M) ∼= PSO(4)×ρ1⊕ρ2 so(3)⊕so(3), where

ρ1, ρ2 are 3-dimensional representations of SO(4), and furthermore, we may identify
∧+

(T ∗M) ∼= PSO(4) ×ρ1
so(3). Since automorphisms preserve the space of flat connections, then the connection restricted to this bundle
is flat. By previous discussion, we get that ρ1 ∼= Id, and we may trivialise this bundle. Similarly, the space of
covariant constant sections of a bundle is preserved by automorphisms. So for some x ∈M , pick an orthonormal
triple of 2-forms ωi |x in

∧+
(T ∗xM), then this will define a covariant constant trivialisation of

∧+
(T ∗xM) the

whole of M , via parallel transport.

Hence for ω := (ω1, ω2, ω3), ∇ω = 0, and a quick calculation verifies for all u, v ∈ C∞ (TM):

∇(ω(u, v)) = ∇(g(Ju, v))

= g((∇J)u, v) + g(J∇u, v) + g(Ju,∇v)

= g((∇J)u, v) +∇(ω(u, v))

∴ ∇J = 0

This parallel triple verifies the claim that we have a hyperKähler structure.

Remark. The converse is also true (up to sign)- i.e. every simply-connected manifold with a hyperKähler
structure is either anti-self or self dual depending on choice of orientation.

To say something about how to show the converse: if (ω1, ω2, ω3) are the two-forms associated to a hy-
perKähler structure (J1, J2, J3), then they are covariant constant. As such they provide covariant constant

non-vanishing sections of the bundle
∧2

(T ∗M). If we pick a local orthonormal trivialisation of T ∗M with
basis ei, then we get connection-forms αij , where ∇(ei) = ej ⊗ αij . The induced Levi-Civita connection on

ei ∧ ej ∈
∧2

(T ∗M) can be written:

∇(ei ∧ ej) = ek ∧ ej ⊗ αki + ei ∧ ek ⊗ αkj

Then the splitting of
∧2

(T ∗M) induces a splitting αij = αij+ + αij−. It remains to be shown that the S2 of

forms containing ω+ are the only possible hyperkahler structures, and thus form a basis for
∧+

(T ∗M). Since
the structures are parallel by definition, this would imply that αij+ = 0 and thus the curvature vanishes on∧+

(T ∗M).

Since we have found one anti-self dual metric, let us see if we can find another: let us return to the action of
(SU(2)L × SU(2)R) /Z2 on M . If there is an isometric action on g for T ∗M , we should also expect there to be

an isometric action on the induced metric on
∧2

(T ∗M). If furthermore we know that there is a hyperKähler
structure, then it should preserve the 2-sphere of Kähler forms Ja: i.e. there is a homomorphism ρ : SU(2) −→
SO(3). If we fix an isomorphism T ∗xM

∼= R4 ∼= R ⊕ su(2) then the induced parallel transport map should fix∧+
(T ∗M), so by suitable coverings, we have a 3-dimensional representation ρ of S3 = SU(2).

3.2 Taub-NUT

Now recall some representation theory of SU(2): the irreducible representations are isomorphic to the standard
representation on Symk(C2), so the three-dimensional representations of SU(2) are isomorphic to either the
trivial representation or Ad, the adjoint representation. In the previous example of Eguchi-Hanson, we saw the
trivial representation, i.e. the hyperKähler structure ω̃ satisfies ω̃ = Iω. However, by the above reasoning, we
should also look for be a metric satisfying an SU(2)/SO(3)-invariance coming from the adjoint representation.
A useful way to write the adjoint representation on su(2) ∼= R3 is using the quaternions H := {a0 + a1Q1 +
a2Q2 + a3Q3 | a0, a1, a2, a3 ∈ R}. We have q ∈ S3 ⊂ H acting on ω ∈ su(2) ∼= ImH via. conjugation:

ω̃ = qωq̄
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To be a hyperKähler structure then, we require dω̃ = 0. Expanding we get:

dω̃ = d(qωq̄)

= dq ∧ ωq̄ + qdωq̄ + qω ∧ dq̄
= dq ∧ ωq̄ + qdωq̄ − qω ∧ q̄dqq̄ = 0 =⇒

q̄dω̃q = q̄dq ∧ ω + dω − ω ∧ q̄dq
= dω + [q̄dq, ω]

= ∇q(ω) = 0

Here ∇q is the connection defined by the metric, since q̄dq is a left-invariant 1-form, the Maurier-Cartan form
of q at the identity. Since we can fix a point x ∈ M , and an isomorphism TxM ∼= R4 ∼= R ⊕ su(2), we set this
to take values:

q̄dq = σ1Q1 + σ2Q2 + σ3Q3

We continue

0 = dω + [q̄dq, ω] = dω +

∑
i

σiQi,
∑
j

ωjQj


=
∑
k

dωkQk +
∑
i,j

σi ∧ ωj [Qi, Qj ]

=
∑
k

dωk + 2
∑
i,j

εijkσi ∧ ωj

Qk =⇒

0 = dωk + 2
∑
i,j

εijkσi ∧ e0 ∧ ej +
∑
i,j,l,m

εijkεjlmσi ∧ el ∧ em

= dωk +
∑
i,j

2εijkσi ∧ e0 ∧ ej

= dωk −
∑
i,j

2εkijdr ∧ σi ∧ ej

Then, using the formulae for dωk given in the previous section, we get:

∇1ω = 2ϕ (ϕ′ + ψ − 2) dr ∧ σ1 ∧ σ2 = 0

∇2ω = ϕ (2ϕ′ψ + ϕψ′ − 2ψ) dr ∧ σ2 ∧ σ3 = 0

∇3ω = ϕ (2ϕ′ψ + ϕψ′ − 2ψ) dr ∧ σ3 ∧ σ1 = 0

So we get the ODE system:

dω̃ = 0⇔

{
ϕ (ϕ′ + ψ − 2) = 0

ϕ (2ϕ′ψ + ϕψ′ − 2ψ) = 0
(9)

Let us re-parametrize to obtain explicit solutions, introduce variable t:

r(t) :=

∫ t

0

ϕ(s)ds =⇒

dr

dt
= ϕ(r(t)) =⇒

d

dr
=

1

ϕ

d

dt

Then we get:

dω̃ = 0⇔

{
1
2ϕ

d
dt

(
ϕ2
)

+ ϕψ − 2ϕ = 0
1
ϕ
d
dt

(
ϕ2ψ

)
− 2ϕψ = 0

(10)

The second equation gives us ϕ2ψ = Ae2t for some constant A. Now writing dψ
dt := ψ̇, we get:

dω̃ = 0 =⇒

{
ϕ̇− (2− ψ)ϕ = 0

ψ̇ −
(

2ψ − 2 ϕ̇ϕψ
)

= 0
=⇒

{
ϕ̇− (2− ψ)ϕ = 0

ψ̇ − 2ψ(ψ − 1) = 0
(11)
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Now we have de-coupled the second equation for ψ, it becomes readily integrable:

ψ−1(ψ − 1)−1ψ̇ = 2 =⇒

ψ =
(
1 +Be2t

)−1
For some constant of integration −B. Using we have two first order equations:{

ϕ2ψ = Ae2t

ψ =
(
1 +Be2t

)−1 =⇒

{
ϕ2 = Ae2t

(
1 +Be2t

)
ψ =

(
1 +Be2t

)−1 (12)

Make one final change of variable u:

u = Be2t =⇒
du = 2udt =⇒

dr =
ϕ

2u
du{

ϕ2 = A
Bu (1 + u)

ψ = (1 + u)
−1 (13)

And then the metric g becomes:

g =
A

B

1 + u

4u2
(
du2 + 4u2

(
σ2

2 + σ3
2
))

+
A

B

u

1 + u
σ1

2

Clearly the choice of parameters A,B correspond to an overall scaling of the metric by a constant A
B . Setting

this to be 4, we get the Taub-NUT metric, [2]:

gTN =

(
1

u
+ 1

)(
du2 + 4u2

(
σ2

2 + σ3
2
))

+ 4

(
1

u
+ 1

)−1
σ1

2 (14)

This metric, besides being a critical example of a number of geometric phenomena, is an example of an
asymptotically locally flat (ALF) geometry of R3 × S1. Let us verify this claim for the parameter u: in
Euclidean space, the induced metric on Sn (R), the sphere of radius R, is gR = R2ds2n, where ds2n is the
standard metric on Sn (1). Now the Riemannian submersion of the Hopf fibration gives:(

SU(2), σ2
1 + σ2

2 + σ2
3

) ∼= (S3(1), ds23
)
−→

(
S2(1),

1

4
ds22

)
Since 〈σ1〉 is the dual subspace generated by the S1 action at T ∗I SU(2) in the Hopf fibration, we have then
that du2 + 4u2

(
σ2

2 + σ3
2
)

gives the standard metric on R3. We can now see explicitly that this metric has
asymptotic behaviour as u→∞ of the product metric- of (up to some scalar) the Euclidean and the standard
(flat) metric on R3 × S1 respectively. In this example, we get the asymptotic fibration of R3 with an S1(2).

While we have examined the asymptotic geometry of this metric, there remains a question of what total space
this metric can actually be defined on: I claim that Taub-NUT metric defines a complete metric on R4. Let
us consider what this means in terms of our original parametrisation (2). Let r =

√
x21 + x22 + x23 + x24 be the

radial coordinate on R4, then it is automatically continuous on all of the domain, so checking completeness is
equivalent to checking continuity of t, which is guaranteed if ϕ(r) is at least differentiable. Furthermore, if we
want to make sure that this metric is smooth, we only need to make sure that ψ(r)2, ϕ(r)2 are smooth near the
origin, since r is only non-smooth there. We can assume ψ,ϕ are already smooth functions of their arguments.
Finally, we will need to check that our boundary conditions can actually be satisfied by the ODE system (9).
Based on these requirements, let us choose the boundary conditions as follows:

ϕ(0) = 0 ψ(0) = 1

ϕ′(0) = 1 ψ′(0) = 0

ϕ(even)(0) = 0 ψ(odd)(0) = 0

(15)

It is easy to verify that (9) is satisfied at r = 0. As to the smoothness of ψ,ϕ with respect to the coordinates,
the parity conditions guarantee that ϕ2 and ϕ2ψ2 are functions of r2 near the origin. Finally, the derivative
conditions ensure that:

dϕ

dr

∣∣∣∣
r=0

=
d(ϕψ)

dr

∣∣∣∣
r=0

= 1

6



Thus we get a vertical tangent condition: by suitable Taylor approximation (we will further assume here that
ψ,ϕ are real analytic) near r = 0, we can obtain the metric:

g = dr2 + r2(σ2
1 + σ2

2 + σ2
3) +O

(
r4
)

(σ2
1 + σ2

2 + σ2
3)

We get the Euclidean metric plus some higher order terms in σ1, σ2, σ3 near the origin- thus we avoid conical
singularities. Furthermore, I claim also that (15) are necessary conditions. From our parametrisation above, it
is clear that the only potentially singular points will be at limu→0: i.e. from (8), ψ > 0 for all u, and ϕ → 0
only as u → 0. To get this back to boundary conditions in terms of r, consider (9). Since these equations are
homogeneous ODE system, i.e. with no explicit r dependence, the solution set is invariant under translations
(avoiding singularities). Once we have obtained the explicit solutions in terms of u, as we have ϕ→ 0 we have
r → r0, we may shift r 7→ r − r0 so that ϕ → 0 as r → 0. From (8) then we must have also ψ → 1. Once we
have this, then the only potential singular point is at r = 0, i.e. we have a Riemannian cone. On the topological
level, we have the standard (non-compact) cone C(M3) over some 3-dimensional space M3, and we equip this
space with the metric dr2 + r2gM . Topologically, for this to be a smooth manifold, on must have M3 ∼= S3

so that C(M3) ∼= R4, and geometrically, bounded curvature means we must have gM has curvature 1. So this
metric avoids conical singularities if and only if5 ϕ′(0) = 1. Then the rest of the boundary conditions follow
from considering this Taylor expansion.

4 Abelian Instantons

Let us now step back for a moment from Eguchi-Hanson, and Taub-NUT metrics and consider U(1)-bundles
over these two spaces, i.e. U(1)-bundles over M = TS2 or R4. If we are able to construct such a bundle
U(1) ↪→ P →M , we may give P a connection form A, i.e. a map A : TP −→ iR satisfying certain equivariance
properties. We canonically identify this form as an element A ∈ Ω1(P ), then since U(1) is abelian we obtain
the curvature 2-form F = dA. In order to specify this bundle up to isomorphism, given some space M , it is
enough to give the first Chern class, i.e. an element in c1(P ) ∈ H2 (M,Z), such that F ∈ H2

dR (M) ∼= H2(M,R)
is associated to this Chern class via. the natural pairing:

Π : H2 (M,Z)×H2
dR (M) −→ R

([σ], [ω]) 7−→
∫
σ

ω

The association comes about as follows: an integral class [ω], i.e. a class that satisfies Π ([σ], [ω]) ∈ Z for all
[σ] ∈ H2 (M,Z), defines an element Π (·, ω) ∈ Hom (H2(M,Z),Z). This has an inclusion into H2 (M,Z) ∼=
Hom (H2(M,Z),Z) ⊕ Ext (H1(M,Z),Z) via the universal coefficient theorem, thus an integral class [ω] ∈
H2
dR (M) defines an element in H2 (M,Z). This element is the first Chern class of this bundle, which charac-

terises the total space of the bundle P up to isomorphisms. Thus, if we are looking to construct such a bundle,
it is enough to find a closed integral 2-form on X.

Consider abelian instantons over these spaces: SU(2)-invariant 2-forms such that F = − ? F . Given our
trivialisation of the space of 2-forms, we know at r 6= 0, we have:

F =
∑
i

αi(r)ω
i
−

So the closed condition implies:

dF =
∑
i

−1

2
εijk

dαi(r)

dr
dr ∧ ej ∧ ek + αi(r)dω

i
− = 0

Let us use the parametrization (2):

−α′1(r)ϕ2 + α1(r) (2ϕ(ψ − ϕ′)) = 0

−α′2,3(r)ϕ2ψ + α2,3(r) (ϕ(2− 2ϕ′ψ − ϕ′ψ)) = 0

5One has to do a little more work here to show that this is the case, by considering curvature.
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Then we get solutions depending upon (a-priori) three parameters (A1, A2, A3):

α1(r) = A1 exp

(
2

∫
ψ − ϕ′

ϕ
dr

)
α2,3(r) = A2,3 exp

(
2

∫
2− 2ϕ′ψ − ψ′ϕ

ϕψ
dr

)
Then, with Eguchi-Hanson, using the conditions (7) and (8):

α1 = A1ϕ
−4

α2,3 = A2,3

(
ϕ4 − k

)−2
However boundary conditions for smoothness at the origin r = 0 requires that:

α1 = A1ϕ
−4

α2,3 = 0

For integrality then, pick a generator for the homology of TS2, e.g. the zero section σ ∼= S2. Since H2

(
TS2,Z

) ∼=
Z.σ, it is enough to look at the case:

C1 =

∫
S2

i

2π
F

This is just the pairing defined above, but we have scaled by i
2π to agree with convention: i.e. scaled the

volume6 of the generator S2, and so F is an iR-valued form. The requirement of integrality is such that C1 is
an integer. Recall also we take the convention that the scaling of the Eguchi-Hanson metric is such that k = 1,
thus we get:

F = iϕ−4ω1
−

Now let us do the same thing for Taub-NUT: use the parametrization with orthonormal co-frame:

{
(

1 +
1

u

) 1
2

du, 2

(
1 +

1

u

)− 1
2

σ1, 2

(
1 +

1

u

) 1
2

uσ2, 2

(
1 +

1

u

) 1
2

uσ3}

Then in this parametrization:

ω1
− = 2du ∧ σ1 − 4

(
u+ u2

)
σ2 ∧ σ3

ω2
− = (2 + 2u) du ∧ σ2 − 4uσ3 ∧ σ1
ω3
− = (2 + 2u) du ∧ σ3 − 4uσ1 ∧ σ2

So that we get:

dω1
− = (−8u) du ∧ σ2 ∧ σ3

dω2
− = (−2− 2u) du ∧ σ3 ∧ σ1

dω3
− = (−2− 2u) du ∧ σ1 ∧ σ2

Then closed condition gives:

−α′1(u)
(
4u+ 4u2

)
+ α1(u) (−8u) = 0

−α′2,3(u) (4u) + α2,3(u) (−2− 2u) = 0

Again we get a family of solutions:

α1(u) = A1 exp

(
−
∫

2

u+ 1
du

)
α2,3(u) = A2,3 exp

(
−
∫

1 + u

2u
du

)
Explicitly:

α1(u) = A1 (u+ 1)
−2

α2,3(u) = A2,3u
− 1

2 exp

(
−1

2
u

)
6More precisely, so that the canonical metric on the tautological bundle over CP1 ∼= S2 has unit Chern class.
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5 Gibbons-Hawking Ansatz

There is a generalisation of Taub-NUT: we fix an open subset U ⊆ R3, with a function h : U −→ R. Then we
fix a U(1)-principal bundle π : P −→ U over this subset with connection form θ. Then we define the metric:

gGH = hπ∗ (gEucl) + h−1θ2

Clearly then h must be a positive function. If we pick coordinates on U 3 (x1, x2, x3) Then, we use the
orthonormal co-frame:

{e0, e1, e2, e3} = {h− 1
2 θ, h

1
2 dx1, h

1
2 dx2, h

1
2 dx3}

Then the usual hyperKahler triple in this case turns out to be:

wi = dxi ∧ θ + hdxj ∧ dxk

So the requirement that dωi = 0, is equivalent to the conditions:

?dh = dθ

Clearly there are some conditions on the function h so that we can find a solution:

?d ? dh = 4h = 0

I.e. the function is h harmonic. In coordinates this is the condition:∑
i

∂2h

∂x2i
= 0
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