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1 Introduction

Symplectic geometry can be seen as generalising Kähler geometry, keeping only the Kähler form ω, and “for-
getting” the complex structure. For this more general set-up, one only need a closed two-form, which is
non-degenerate i.e. ιXω = 0 if and only if X = 0.

A symplectic form can often be defined from the data of a Riemannian metric. In Kähler geometry for
example, the complex structure J gives a metric g as follows, for u, v ∈ Γ(M):

g(Ju, v) = ω(u, v)

The Riemannian manifolds with holonomy contained in SU(n) or Sp(n) can also be considered as special
cases of symplectic manifolds in this way. Many interesting and useful results in these geometries can occur just
using the underlying symplectic manifold, such as Gromov’s result on J-holomorphic curves [1].

One powerful construction in symplectic geometry, developed by Marsden-Weinstein-Meyer, is called the
symplectic quotient, and can be used to construct Kähler, and hyperKähler manifolds. The Marsden-Weinstein-
Meyer theorem concerns whether a particular quotient preserving the symplectic structure is a smooth manifold.
A key ingredient in this theorem is the concept of a moment map, associated to the action of a Lie group.

In this note, we will look at some properties of the moment map, particularly when the Lie group is abelian,
so called toric geometry. This has been applied to the construction of Reimannian manifolds with special
holonomy groups, such toric Kähler, Calabi-Yau cones [2, Ch. 5], hypertoric geometry [3], and the construction
of G2-manifolds with a two-torus symmetry [4]. The Calabi-Yau case turns up in physics literature as well,
for example in the context of AdS/CFT correspondence and supersymmetry [3], [5]. There is a corresponding
notion of an algebraic moment map in algebraic geometry, as well as toric varieties, see [6], related to notions
of stability in geometric invariant theory. Our main reference will be [10].

2 Symplectic Group Actions and Moment Maps

In what follows, will define natural symplectic notions in three categories: groups, vector spaces, and Lie
algebras. Assuming one is familiar with the analogous game in Riemannian geometry, we will compare these
two games, but as we shall see, they will end up being quite different.

Firstly, let (M,ω) be a symplectic manifold, Diff(M) the group of diffeomorphisms of M . We define the
subgroup of symplectomorphisms:

Sympl(M,ω) := {φ ∈ Diff(M) | φ∗ω = ω}

Let G be an arbitrary group. A symplectic action φ of G on M is a group homomorphism:

φ : G→ Sympl(M,ω) (1)

We will write the diffeomorphism associated to g ∈ G as φg. The “infinitesimal” picture of symplectic actions
by smooth Lie groups leads us to the following definition. If Γ(M) is the space of vector fields on M , then a
symplectic vector field is defined as a linear subspace:

ΓSympl(M,ω) := {X ∈ Γ(M) | LXω = 0} = {X ∈ Γ(M) | d(ιXω) = 0} (2)

If ρt : M × I → M is the local flow generated by X, i.e. if we fix p ∈ M , then the curve ρt(p) is the unique
maximal solution on I = (a, b) ⊆ R to: {

ρ0(p) = p
dρt(p)
dt = X(ρt(p))
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Then, if for all p ∈M , we have:

(LXω)p :=
d

dt

∣∣∣∣
t=0

((ρt)
∗ωp) = 0 ⇔ (ρt)

∗ω = ω

So an equivalent condition to LXω = 0 is that the flow ρt acts via symplectomorphisms.
We can make the correspondence between symplectic group actions and symplectic vector fields explicit via

the lie algebra: given homomorphism φ : G→ Sympl(M,ω) there is an induced homomorphism of lie algebras:

Dφ : g→ ΓSympl(M,ω)

X 7→ d

dt

∣∣∣∣
t=0

φ(exp(−tX)).p
(3)

Here, we have the standard lie brackets on these two vector spaces.

Remark 2.1. Given a lie sub-algebra of complete vector-fields g, pointwise isomorphic to the lie algebra of
some compact, simply-connected Lie group G, we can always locally integrate them to a group action of G. To
see this, given some open neighbourhood U of the identity Id ∈ G, for all g ∈ G we can write a finite product
g = g1 . . . gN for gi ∈ U , so a group action is determined uniquely by its generating vector fields.

There is a distinguished sub-algebra of ΓSympl(M,ω), which uses the symplectic form. Namely, since ω is
closed, then X ∈ ΓSympl(M,ω) is equivalent to ιXω being a closed one-form. The subspace of Hamiltonian
vector fields is defined such that ιXω is exact:

ΓHam(M,ω) := {X ∈ Γ(M) | ∃H ∈ C∞(M) s.t. ιXω = dH}

Lemma 2.2. Suppose (M,ω) is a connected symplectic manifold, and C∞0 (M) is the space of smooth functions
H with

∫
M
H = 0. Then there is a isomorphism of vector spaces C∞0 (M)→ ΓHam(M,ω) that sends H 7→ XH ,

where XH is the unique solution of dH = ιXHω.

Proof. Clearly, this map is linear, and surjective by definition. If XH = 0, then this implies dH = 0, and so
H = 0 since H ∈ C∞0 (M), hence this map is injective.

Now clearly, a necessary condition to have an action φ corresponding to Hamiltonian vector fields in the
image of Dφ, is that for every X ∈ g, there is an element µ∗(X) ∈ C∞(M) so that dµ∗(X) = ιDφ(X)ω. Now
importantly, with the symplectic action, it is not just a vector space homomorphisms (i.e a linear maps) we
want, but a Lie algebra homomorphism.

Lemma 2.3. Suppose (M,ω) is a symplectic manifold. We have the following Lie algebra inclusions:

ΓHam(M,ω) ⊆ ΓSympl(M,ω) ⊂ Γ(M)

There are two clear differences here to the corresponding notions in Riemannian geometry. The first is that
the first inclusion implies, unlike the space of infinitesimal isometries, ΓSympl(M,ω) is never finite dimensional
by Lemma 2.2. The second is that there is no analogue of ΓHam(M,ω): if a one-form θ dual to a vector field via
a metric g is exact, then it is Killing if and only it is parallel i.e. ∇θ = 0, where ∇ is the Levi-Cevita connection.
In other words, if θ = df for some function f , then Hess(f) = 0. However, by taking the trace, this implies f is
harmonic, so must be constant if it is bounded.

Lemma 2.4. Suppose (M,ω) is a compact symplectic manifold and H1(M,R) = 0. Then ΓHam(M,ω) =
ΓSympl(M,ω).

Proof. Recall that X ∈ ΓSympl(M,ω) iff ιXω is closed. Suppose we define a generic Riemannian metric on M ,
by our co-homological assumption, applying the Hodge theorem says that ιXω must necessarily by exact, and
so X ∈ ΓHam(M,ω).

Notice all these algebras have natural G action, as does g via the adjoint. To see this this action, there is
one final Lie algebra structure that still to consider: the algebra of functions on M . This also has a natural G
action by the pullback, so as well as the Hamiltonian condition, in order well-defined vector fields on M we will
need that equivariance with respect to the G-action. To be a bit more precise about this equivariance, we define
the following Lie bracket { ·, · } for f, g ∈ C∞0 (M), so that the linear map H 7→ XH in Lemma 2.2 becomes a
Lie algebra anti-homomorphism:

{f, g} := ω(Xf , Xg) (4)

Viewing Γ(M) as the space of derivations on C∞0 (M), the notion of equivariance and Lie algebra homomorphisms
on C∞0 (M) coincide. We are now almost ready to define moment maps: let (M,ω) be a symplectic manifold,
G connected Lie group with symplectic action φ, and Lie algebra g.
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Definition 2.1. A co-moment map is a Lie algebra homomorphism µ∗ : (g, [ ·, · ])→ (C∞(M), { ·, · }) making
the following diagram commute:

C∞(M) Ω1(M)

g Γ(M)

d

µ∗

Dφ

' (5)

Here isomorphism between Γ(M)→ Ω1(M) is given by X 7→ ιXω.

An equivalent description of this is in terms of its dual, the moment map:

Definition 2.2. A moment map is a map µ : M → g∗ such that:

1. ∀X ∈ g, µp(X) = µ∗(X)|p

2. µ(φg(p)) = Ad∗g(µ(p))

The quadruple (M,ω,G, µ) is called a Hamiltonian G-space.

Again, the second condition of equivariance is precisely the condition that co-moment map be a Lie algebra
homomorphism.

We also have the following lemma from [10], which we state without proof:

Lemma 2.5. Suppose (M,ω) is a symplectic manifold, G compact connected Lie group H1
dR (G) = H2

dR (G) = 0
acting by symplectomorphisms. Then there is a unique moment map µ for this action.

Let us see some important special cases of moment maps:

Example 2.1. Let G = S1, or G = R. Now g ' g∗ ' R, and the moment map µ : M → R, satisfies:

1. On the generator of g, X = 1 and µp(1) = µ∗(1)|p = µp. If θ is the coordinate on an S1 or R orbit, with
vector field ∂θ, then dµ = ι∂θω

2. Since group is commutative, the (co-)adjoint action is trivial, equivariance becomes invariance: µ (φgp) =
µ (p), in particular LXµ = 0.

Example 2.2. Let G = Tn. Now g ' g∗ ' Rn, and the moment map µ : M → Rn, satisfies:

1. Given the standard basis Xi of g, and µ(Xi) = µ∗(Xi) := µi, i.e. we have n maps µi : M → R. If θi is
the angular coordinate on an S1 orbit, with vector field ∂θi , then dµi = ι∂θiω.

2. Again the group is commutative, so we have G-invariance: µ (φgp) = µ (p), in particular LXiµj = 0.

In both of these cases, note that the condition of G invariance implies that the pre-image of a single point in
µ(M) ⊂ Rn is contains a G-orbit in M . This observation is key to understanding why these objects are simple
to describe, once we know the µ(M) and how G acts on the pre-image. How to obtain such a description will
be the content of the next section. In the meantime, we will describe some examples of Hamiltonian actions,
vector fields, symplectic vector fields, and describe µ(M) in preparation for the convexity theorem.

Example 2.3. Let G = S1, and M = CP1, be the unit sphere x2 + y2 + z2 = 1 centred at the origin in R3 in
cylindrical coordinates (h, θ), where

x = h y = sin θ
√

1− h2 z = cos θ
√

1− h2

and the symplectic form is given by ω = dθ ∧ dh. We have that Xh := ∂θ is a Hamiltonian vector field, since:

ιXhω = dh

Note that as H1
(
S2
)

= 0, we have that ΓSympl(M,ω) = ΓHam(M,ω). Now the integral curves ρt at (h, θ) ∈ S2

are:

ρt|(h,θ) = (h, θ + t)

. Thus Xh is the Hamiltonian vector field associated to an S1-action of rotation around the axis y = z = 0, i.e.
if eit ∈ S1 then the action φ is given by φeit .(h, θ) = ρt|(h,θ). Then a moment map µ : S2 → R is given by µ = h.
Notice also, that µ(S2) = [−1, 1], and µ−1((−1, 1)) ∼= (−1, 1)× S1, whereas µ−1({−1}) ∼= µ−1({1}) ∼= {pt}.
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Example 2.4. Let G = Tn, M = Cn with coordinates (z1, . . . , zn) =
(
r1e

iθ1 , . . . , rne
iθn
)
, and symplectic form

ω = i
2

∑
j dzj ∧ dz̄j =

∑
j rjdrj ∧ dθj , the standard Kähler form on Cn.

Now every complete symplectic vector field defines an symplectic action of R on M via its integral curves
ρt. If these integral curves are periodic then this descends to a symplectic S1 action on M . Thus we will look
directly for Tn actions, rather than first defining a vector field. If t :=

(
eit1 , . . . , eitn

)
∈ Tn, then:

t.
(
r1e

iθ1 , . . . , rne
iθn
)

:=
(
r1e

iθ1+t1 , . . . , rne
iθn+tn

)
With vector fields of Xj given by ∂θj , then

ι∂θjω = −rjdrj = d

(
−
r2j
2

)

So a moment map µ : Cn → Rn for this action is given by:

µ (z1, . . . , zn) := −1

2

(
|z1|2, . . . , |zn|2

)
One finds that the image of µ is the negative quadrant, µ(Cn) = Rn≤0. Moreover, for all x ∈ Rn<0, µ−1(x) ∼= Tn,

while µ−1(0) = 0 ∈ Cn.

Example 2.5. Let G = Tn, M = CPn ∼= S2n+1/S1 with homogeneous coordinates [z0 : . . . : zn]. We have the
following diagram:

0 S1 S2n+1 CPn 0

Cn+1

i

π

(6)

With π : S2n+1 → CPn be the quotient map π (z0, . . . , zn) = [z0 : . . . : zn], and i : S2n+1 ↪→ Cn+1 be the
inclusion map. Let CPn be equipped with symplectic form defined by the Fubini-Study Kähler metric: the
unique symplectic form ω such that the standard Kähler form ω0 on Cn, given in the previous example, satisfies
i∗ω0 = π∗ω1.

Now, let (t1, . . . , tn) = t ∈ Tn act on CPn via:

t. [z0 : . . . : zn] := [z0 : t1z1 : . . . : tnzn]

Let ‖z‖2 =
∑
j=0 |zj |2, then a moment map for this action is given by:

µ [z0 : . . . : zn] := − 1

2‖z‖2
(
|z1|2, . . . , |zn|2

)
The image of CPn under the moment map is given by the polytope:

µ (CPn) = {(x1 . . . xn) ∈ Rn | xj ≤ 0,
∑
j

xj ≥ −
1

2
}

3 Convexity

We will now discuss a result about moment maps concerning G = Tn, where these maps have particularly
nice images. This is result is the (abelian) convexity theorem of Atiyah [7] and Guillemin-Sternberg [8]. The
theorem itself can be used to prove interesting results, for example in the case, dimM = 2n, and an effective
action, they can lead to a classification of manifolds with these actions via polytopes (the higher-dimensional
analogue of polygons), done by Delzant in [9]. This is another motivation to study the moment map, as this
classification can simplify many calculations and constructions of examples. We prove some preliminary results
in the warm-up to convexity theorem.

Lemma 3.1. Let (M,ω) be a connected compact symplectic manifold, with a symplectic Tn-action, φ : Tn →
Sympl(M,ω), then there exists an almost complex structure J on M such that ω (·, J ·)p is a Riemannian metric,
and φ∗θJ = J ∀θ ∈ Tn.

1This happens to be an example of the symplectic quotient construction for a similar moment map to the previous exercise with
S1 ⊂ Tn.
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Proof. It is a standard fact2, that given a symplectic form can always find a Riemannian metric and an com-
patible almost complex structure, and let such a metric be given by g0. Now we have to construct a metric so
the second part of the lemma holds, using the Haar measure on Tn, define:

g(X,Y ) =

∫
θ∈Tn

φθg0(X,Y )dθ

Thus φ∗θg = g , and for all X,Y ∈ Γ(M):

g(X,Y ) = ω(X,JY ) = φ∗θ(X, JY ) = ω(dφθX, dφθJY )

= φ∗θg(X,Y ) = g(dφθX, dφθY ) = ω(dφθX,JdφθY )

Thus Jdφθ = dφθJ and the claim is proved.

We use this to say something about the set of fixed points in M of any subgroup H ⊂ Tn:

Lemma 3.2. Let (M,ω) , φ be as before, and H ⊂ Tn be a subgroup. Then

Fix (φ(H)) =
⋂
θ∈H

Fix (φ(θ))

is a symplectic submanifold of M .

Proof. Let p ∈ Fix (φ(H)). Since Tn acts isometrically, then by definition, for the exponential map exp : TpM →
M , we have:

exp (dφθX) = φθ (exp (X))

Then locally, a fixed point of φθ is the image under the exponential map of eigenvectors X ∈ TpM of dφθ with
eigenvalue 1: i.e. we can construct the local chart of the fixed point set by finding the eigenspace at a point
spanned by these vectors, and use the exponential map. In other words:

TpFix (φ(H)) =
⋂
θ∈H

ker (Id − dφθ)

By the implicit function theorem, this is a submanifold, also since Jdφθ = dφθJ , then the +1-eigenspace is
preserved by J , so TpFix (φ(H)) is also a symplectic vector space with ωp = g (X,JY ).

The final lemma to prove involves some Morse theory. First, recall the definition:

Definition 3.1. Let (M, g) be a Riemannain manifold, and f ∈ C∞ (M) then the shape operator Sf ∈
C∞ (M,TM ⊗ T ∗M) is defined by:

Hessf (X,Y ) = g (SfX,Y )

For all X,Y ∈ Γ(M).

Now we define the following class of functions:

Definition 3.2. Let (M, g) be a compact Riemannain manifold, then f ∈ C∞ (M) is Morse-Bott if:

Crit(f) := {p ∈M | df(p) = 0} ⊆M

is a submanifold, and ∀p ∈ Crit(f), TpCrit(f) = kerSf (p)

Furthermore, if f is Morse-Bott, then Crit(f) has finitely many connected components, thus ∀p ∈ Crit(f),
we have TpM = TpCrit(f)⊕E+

p ⊕E−p , where E±p is the positive/negative-definite eigenspaces of Sf . Note that
these subspaces are sub-bundles of TM restricted to each component of Crit(f), and we denote the rank of
these subbundles as the (co-)index. We will use the following from [12, p.178-179]:

Lemma 3.3. Let (M, g) be a compact connect Riemannian manifold, and f ∈ C∞ (M) be Morse-Bott function
such for every connected component of Crit(f), the index and co-index is not equal to one. Then f−1(c) is
connected for every c ∈ R.

Now we return to our situation:

2e.g. see [11, App. 17.1]
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Lemma 3.4. Let (M,ω) be a connected compact symplectic manifold, with a Hamiltonian Tn-action, φ :
Tn → Sympl(M,ω), and moment map µ : M → Rn. Let X ∈ Rn, and µ∗(X) ∈ C∞ (M), and Tn ⊆ H :=
{exp tX | t ∈ R} be the closure of the the subgroup generated by X. Then:

1. Crit (µ∗(X)) =
⋂
θ∈H Fix (φ(θ))

2. µ∗(X) is Morse-Bott, and has criticial submanifolds of even index/co-index

Proof. dµ∗(X)|p = ιDφ(X)ω|p, then if p ∈ Crit (µ∗(X)) we have that Dφ(X)|p = 0, and so the flows generated by
this action leave x invariant, thus p ∈

⋂
θ∈H Fix (φ(θ)). Similarly if we assume the converse, then Dφ(X)|p = 0,

and if we have that X is irrational so that H = G, we have converse inclusion. By continuity we may extend
this to rational X.

We now show TpCrit(dµ∗(X)) = kerSµ∗(X)(p) =
⋂
θ∈H ker (Id − dφθ) . Note that dψexp tX = exp

(
−tJSµ∗(X)

)
,

so if X is irrational, then kerSµ∗(X) are the fixed point of the action, and by continuity we prove the claim for
non-rational X.

Finally, we saw that Jdφθ = dφθJ . Since the critical submanifolds must be even dimensional as they are
symplectic, and J is almost complex, thus the negative/positive eigen-spaces must have even dimension as
well.

Theorem 3.5 (Convexity, [7] [8]). Let (M,ω) be a connected compact symplectic manifold, µ : M → Rn be the
moment map for a Hamiltonian Tn-action, with φ : Tn → Sympl(M,ω). Then:

1. µ−1(c) is connected ∀c ∈ µ (M).

2. µ (M) is convex.

3. µ (M) = co (µ(Fix(φ))), the convex hull of the images of the fixed points of the action.

Proof. As for the first two statements, we will prove this via the following strategy using induction on 1 ≤ k ≤ n.
Let the statement of the theorem for all Tk . . .T1 be:

� Ak : µ−1(c) is connected ∀c ∈ µ (M).

� Bk : µ (M) is convex.

B1 is easy to prove: since M is connected, and the map µ : M → R is continuous, then µ (M) ⊂ R is connected.
Hence, it must also be convex. Next, we show Ak ⇒ Bk+1. Now since this is a torus action we can split the
moment map: µ = (mu1, . . . µk, µk+1). Let us first assume we have a line of integer slope, so that we split
Rn+1 = L ⊕ P , and P is a plane with normal of integer slope containing 0, so that P generates a sub-torus
action Tl ⊂ Tk+1, l ≤ k, with map µP := projPµ. For v0 ∈ µP (M) be in P , where L is some line not in P ,
so that if we fix p0 ∈ µ−1P (v0), then µ−1P (v0) = {p ∈ M | µ(p) − µ(p0) ∈ L}. Since µ−1P (v0) is connected by
assumption, and if pt is a path connecting p0 and any other point p1 ∈ µ−1P (v0), then the path µ(pt)−µ(p0) ∈ L.
But L is one dimensional, so connectivity implies convexity, thus for any p1, p0 ∈ µ−1P (v0), the line containing
µ(p1), µ(p0) is in µ(M), i.e. tµ(p0) + (1 − t)µ(p1) ∈ µ(M). Since M is compact, µ(M) is also compact in Rn,
so closed, thus the line connecting any points p0, p1 ∈ µ(M) can be approximated by an integer line sufficiently
close.

As for the third part of the theorem, note that the second statement in the theorem implies inclusion µ (M) ⊆
co (µ(Fix(φ))), as by definition the convex hull of a set is the smallest convex set containing it. Also, we note
that the moment map is constant on Fix (φ), so the image of the fixed points in M is a set of points in µ(M).
Denote this set {v1 . . . vN}, and let 〈·, ·〉 be the pairing between g∗ × g → R. Since co ({v1 . . . vN}) is a convex
subset of Rn, for every v0 6∈ co ({v1 . . . vN}) there exists X ∈ g such that:

〈v0, X〉 > 〈vi, X〉

For all 1 ≤ i ≤ N , in particular, one may choose X such that X has irrational slope, so that exp tX is dense in
Tn. Since dµ∗(X) = ιDφ(X)ω then Dφ(X)|p = 0⇔ p ∈ Fix(φ). Furthermore, since M is compact, this implies
that µ∗(X) ∈ C∞(M) must attain a maximum on p ∈ Fix(φ), but now:

〈v0, X〉 > sup
p∈M
〈µ(p), X〉

Hence v0 6∈ µ(M).
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Now we turn to A1 and the inductive step Ak ⇒ Ak+1. For A1, this is a direct consequence of (3.3) applied
to the Morse function µ∗(X). It suffices to prove the inductive step in the case we have an effective action i.e.
(dµ1 . . . dµk) are linearly independent, otherwise we may reduce to the action of a sub-torus on which the action
is effective. Now by this assumption, let 0 6= X ∈ g, then:

dµ∗(X) =
∑
i

Xidµi = 0⇔ Xi = 0∀i

Thus dµ∗(X) is non-constant. Now consider:

C :=
⋃

X∈Rn 6=0

Crit (µ∗(X)) =
⋂

X∈Zn 6=0

Crit (µ∗(X))

Now C is a countable union of proper submanifolds, and by Baire’s theorem, this implies M − C is dense in M .
Also note that M − C is open since p ∈M − C ⇔ dµ∗(X)(p) =

∑
iXidµi(p) 6= 0 for all X ∈ Rn, i.e. dµi(p) are

linearly independent, thus by continuity they must also be linearly independent in a neighbourhood of p. This
shows that the regular values of µ is dense in µ(M). Then again, by continuity, to show µ−1 (v) is connected for
every v = (v1, . . . , vk) ∈ µ(M), it suffices to show that it is connected for the regular values of µ. Furthermore
it suffices to show this for (v1, . . . , vk−1) and (µ1, . . . , µk−1). Now by the inductive hypothesis:

Q =

k−1⋂
j=1

µ−1j (vj)

is connected whenever (v1, . . . , vk−1) is a regular value for (µ1, . . . , µk−1). Then, using a lemma from [12, p.183],
and lemma (3.4), then µ−1 (v) = Q ∩ µ−1j (vj) is connected for every j ≤ k − 1, thus the claim is proved.
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