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Abstract

What follows was presented at the third British Isles Graduate Workshop: Gauge Theory with a View
to Higher Dimensions.

1 Motivation

A useful way to a way to construct manifolds with special holonomy is via Riemannian cones:

Definition 1.1. Given a Riemannian manifold (M, g), the cone over M , denoted C(M), is defined as the space
R>0 ×M with the metric dr2 + r2g.

For example, (M, g) has a Sasaki-Einstein structure if and only if C(M) is Calabi-Yau. Recall that if C(M)
is Ricci-flat then g is Einstein, and if C(M) is Kähler, then (M, g) has a Sasaki structure. There are infinitely
many manifolds with Sasaki-Einstein structures, so there are infinitely many Calabi-Yau cones [1].

On the other hand, if we want to study desingularization or deformation of special holonomy manifolds,
cone singularities are a particularly simple type of singularity to start with. We can, for example, de-singularize
cones by replacing the singular point at r = 0 with another manifold, to get an asymptotically conical manifold
near the singular point. We can approximate the metric of the cone to arbitrary precision by the asymptotically
conical metric away from the cone point.

2 Four Definitions

2.1 Motivating definition: Holonomy in G2

In this section we give four equivalent definitions of strictly (i.e. non-Kähler) nearly-Kähler six manifolds. All
references for this section can be found in [2]. First some preliminary definitions:

Definition 2.1. Let (M, g) be a Riemannian 6-manifold. An SU(3) structure on (M, g) is a pair (Ω, ω),
where ω is a non-degenerate 2-form compatible with g and Ω is a non-vanishing (3, 0) form with respect to the
almost-complex structure induced by g and ω, so that up to normalisation:

ω3 = Ω ∧ Ω̄

Let (M, g) be a Riemannian six-manifold with an SU(3) structure (Ω, ω).

Definition 2.2. (M, g) is a nearly Kähler 6-manifold if the holonomy of C(M) is contained in G2.

Remark 2.3. In fact, if (M, g) is complete and Hol(C(M)) ( G2, then C(M) = (R7, g0), where g0 is the
Euclidean metric on R7, i.e. M = S6.

Note also that having a G2-structure on the cone gives a natural SU(3) ⊂ G2 structure on the level set
1×M . We will see this later on. An explicit construction of the G2-structure starting from the SU(3)-structure
is given in [3].

2.2 Simply-connected, complete examples

Four examples come from homogeneous spaces and were discovered by Gray, Wolf in [4]. A result of Butruille in
[5] is that these are the only simply-connected examples of nearly Kähler 6-manifolds coming from homogeneous
spaces:

1. (S6, g0) ' G2/SU(3).
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2. S3 × S3 ' SU(2)3/∆SU(2)

3. CP 3 ' Sp(2)/U(1)× Sp(1)

4. F3 ' SU(3)/T 2.

Two more non-homogeneous examples are the so-called co-homogeneity one spaces. These were discovered by
Foscolo and Haskins in 2017 [2]. Topologically, they are given as:

1. S6

2. S3 × S3

Note that these spaces do not carry their homogeneous metrics. This is a complete list of all the current known
examples of complete, simply-connected nearly-Kähler 6-manifolds.

Remark 2.4. The first explicit example of a local metric with holonomy equal to G2 was a cone over the flag
manifold F3 by Bryant in [6]. Bryant and Salamon in [7] constructed the first complete examples of G2 metrics
which were asymptotic to the cones C(S3 × S3), C(CP 3), and C(F 3).

2.3 Second definition: formulas for dω and dΩ

Recall that a G2 manifold M is equipped with a closed, G2-invariant 3-form φ and its Hodge dual ∗φ. If M is
the cone over a six-manifold with an SU(3) structure (Ω, ω), these are given by the equations:

φ = r2dr ∧ ω + r3 Re(Ω)

∗φ = −r3dr ∧ Im(Ω) +
1

2
r4ω2

Imposing that these forms are closed, then the resulting equations for dω and dIm(Ω) motivates our second
definition of a nearly Kähler six-manifold.

Definition 2.5. Let (M, g) be a Riemannian 6-manifold with an SU(3) structure (Ω, ω). Then (M, g) is a
nearly Kähler six-manifold if:

dω = 3Re(Ω) and dIm(Ω) = −2ω2.

For more on this, see [2].

2.4 Facts about nearly Kähler six-manifolds

The following facts follow easily from our above discussion and the first definition of a nearly Kähler six-manifold.

• If C(M) is Ricci flat then (M, g) is Einstein, so it has constant (positive) scalar curvature. This implies
that if (M, g) is complete, then M is compact and π1(M) is finite.

• Since Ω ∈ Λ3,0(M) is nonvanishing, we have that:

c1(M,ω) := c1(Λ3,0(M)) = 0.

2.5 Third definition: covariant derivative of J

For more details of the following, see [8]. Recall that the octonion ring can be written O = H ⊕KH where H
is the quaternion ring and K is a formal variable such that K2 = −1. The algebra on O is determined by the
relations

q1 +Kq2 = q1 −Kq2
(q1 +Kq2).(q3 +Kq4) = q1q3 + q4q2 +K(q2q3 + q4q1).

The imaginary octonions are the elements x ∈ O of the form ai + bj + ck + K(x + iy + jz + kw). Octonion
multiplication induces a cross product on the imaginary octonions by the map:

X × Y =
1

2
(X.Y − Y.X)

for X and Y imaginary octonions.
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Now consider the example (S6, g0). S6 is embedded in R7, which can be identified with the imaginary
octonions and given the resulting cross product structure. If N is the normal vector field to S6, then

J = N ×X

gives an almost-complex structure on S6. It can be checked that the Nijenhuis tensor of (S6, J, g0) is nonvan-
ishing, and that J is almost-Hermitian with respect to g0. Define a 2-form on S6 by

ω(X,Y ) = 〈N ×X,Y 〉,

where the angle brackets denote the Euclidean inner product. Note that this is form invariant under the action of
G2 on Im(O), and one can use this form to recover a 3-form Ω, to give the SU(3) structure on the homogeneous
space (S6, g0) ' G2/SU(3).

Remark 2.6. This cross product also induces a standard G2 3-form on Im(O) ∼= R7 via:

φ(X,Y, Z) = 〈X × Y,Z〉

Lemma 2.1. On (S6, J, g0), we have that

〈(∇XJ)Y,Z〉 = 〈∇XN × Y, Z〉,

and so (∇XJ)X = 0, but ∇J 6= 0.

Recall also that if ∇J = 0, then dω = 0. This motivates our third definition.

Definition 2.7. Let J be an almost-Hermitian structure on Riemannian manifold (M, g). Then M is nearly
Kähler if (∇XJ)X = 0 ∀X ∈ Γ(TM) but ∇J 6= 0, where ∇ is the Levi-Civita connection.

We may translate this observation/definition into representation theory. We begin point-wise: let V be a
real 2n dimensional vector space with inner product g and ω an almost-Hermitian structure. Then g induces a
natural inner product on ⊗3V ∗, and U(n) acts on ⊗3V ∗ in the natural way.

Theorem 2.2 (Gray-Hervella [9]). . Let W ⊂ ⊗3V ∗ be the subspace

W = {a ∈ ⊗3V ∗ : a(X,Y, Z) = −a(X,Z, Y ) = −a(X, JY, JZ) ∀X,Y, Z ∈ V }.

Then W splits orthogonally into irreducible U(n)-representations

W = W1 ⊕W2 ⊕W3 ⊕W4,

where
W1 = {a ∈W : α(X,X,Z) = 0}.

For n = 1, W = 0. For n = 2, W1 = W3 = 0. For n ≥ 3, all Wi are nontrivial.

Now take V = TpM , W the subspace of ⊗3V ∗ as before, and α = (∇ω)p. Then we have the following fact.

Lemma 2.3. The form α ∈ W for all p ∈ M if and only if (M, g) is almost-Hermitian. Furthermore, if we
assume ∇J 6= 0, then (M, g) is nearly-Kähler if and only if α ∈W1 for all p ∈M .

Therefore the first dimension at which we get strictly nearly-Kähler manifolds is 6 real dimensions (3 complex
dimensions). Note that definition 2.7 makes sense in all even dimensions, but we see nearly-Kähler 6-manifolds
play a special role.

2.6 Fourth definition: real nonzero Killing spinor

Recall from the previous talk that Cl(6, 0) ' End(R8). The group Spin(6) acts on the spin representation
∆ ' R8. If we fix an orthonormal basis e1, ..., e6 for the R6 on which we have formed Cl(6, 0), then the ei’s
generate Cl(6, 0) as an algebra.

Let J = e1 · ... · e6, where · denotes Clifford multiplication. Then for any 0 6= φ ∈ ∆, ∆ can be decomposed
as

∆ = Rφ⊕ RJφ⊕ {x · φ : x ∈ R6}.

Multiplication by J fixes the last (six-dimensional) component. Thus we can define a complex structure Jφ on
R6 by the equation

Jφ(x).φ = J(x · φ). (1)

3



We can also define the form Ωφ by

Ωφ(X,Y, Z) = −〈X · Y · Z · φ, φ〉R8 .

It is checked that Jφ and Ωφ give an SU(3) structure on R6. Now let φ be a section of the spin bundle

S = P̃ ×Spin ∆, and x be a vector field on M : then this point-wise construction gives an SU(3) structure on S.
Lift the Levi-Civita connection on M to the connection ∇S on S. We call a section φ ∈ Γ(S) a real Killing

spinor if for all X ∈ Γ(TM),
∇SX(φ) = λX · φ

for some nonzero λ ∈ R. By differentiating equation 1, we can show that if M admits a real Killing spinor then
it satisfies definition 2.7 with the SU(3) structure defined above. See [10] for a complete proof.
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